The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance
نویسندگان
چکیده
Many insects, including Drosophila, succumb to the physiological effects of chilling at temperatures well above those causing freezing. Low temperature causes a loss of extracellular ion and water homeostasis in such insects, and chill injuries accumulate. Using an integrative and comparative approach, we examined the role of ion and water balance in insect chilling susceptibility/ tolerance. The Malpighian tubules (MT), of chill susceptible Drosophila species lost [Na(+)] and [K(+)] selectivity at low temperatures, which contributed to a loss of Na(+) and water balance and a deleterious increase in extracellular [K(+)]. By contrast, the tubules of chill tolerant Drosophila species maintained their MT ion selectivity, maintained stable extracellular ion concentrations, and thereby avoided injury. The most tolerant species were able to modulate ion balance while in a cold-induced coma and this ongoing physiological acclimation process allowed some individuals of the tolerant species to recover from chill coma during low temperature exposure. Accordingly, differences in the ability to maintain homeostatic control of water and ion balance at low temperature may explain large parts of the wide intra- and interspecific variation in insect chilling tolerance.
منابع مشابه
Preservation of potassium balance is strongly associated with insect cold tolerance in the field: a seasonal study of Drosophila subobscura.
There is interest in pinpointing genes and physiological mechanisms explaining intra- and interspecific variations in cold tolerance, because thermal tolerance phenotypes strongly impact the distribution and abundance of wild animals. Laboratory studies have highlighted that the capacity to preserve water and ion homeostasis is linked to low temperature survival in insects. It remains unknown, ...
متن کاملGenetic variation in senescence marker protein-30 is associated with natural variation in cold tolerance in Drosophila.
A comprehensive understanding of the genetic basis of phenotypic adaptation in nature requires the identification of the functional allelic variation underlying adaptive phenotypes. The manner in which organisms respond to temperature extremes is an adaptation in many species. In the current study, we investigate the role of molecular variation in senescence marker protein-30 (Smp-30) on natura...
متن کاملParallel ionoregulatory adjustments underlie phenotypic plasticity and evolution of Drosophila cold tolerance.
Low temperature tolerance is the main predictor of variation in the global distribution and performance of insects, yet the molecular mechanisms underlying cold tolerance variation are poorly known, and it is unclear whether the mechanisms that improve cold tolerance within the lifetime of an individual insect are similar to those that underlie evolved differences among species. The accumulatio...
متن کاملHemolymph metabolites and osmolality are tightly linked to cold tolerance of Drosophila species: a comparative study.
Drosophila, like most insects, are susceptible to low temperatures, and will succumb to temperatures above the freezing point of their hemolymph. For these insects, cold exposure causes a loss of extracellular ion and water homeostasis, leading to chill injury and eventually death. Chill-tolerant species are characterized by lower hemolymph [Na(+)] than chill-susceptible species and this lowere...
متن کاملRapid cold hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory locust, Locusta migratoria.
Chill tolerance of insects is defined as the ability to tolerate low temperature under circumstances not involving freezing of intracellular or extracellular fluids. For many insects chill tolerance is crucial for their ability to persist in cold environments and mounting evidence indicates that chill tolerance is associated with the ability to maintain ion and water homeostasis, thereby ensuri...
متن کامل